Firma

Firma

Einsatz von Adsorptionstrocknern in der Prozesslufttechnik

Hervorragende Eigenschaften des Silicagels nutzen

Hervorragende Eigenschaften des Silicagels nutzen

Wenn es darum geht, Prozessluftströme sehr stark oder auf sehr geringe absolute Feuchten zu trocknen, führt kein Weg am Einsatz von Adsorptionstrocknern vorbei. Da die Entfeuchtung von Luft durch eine extreme Unterschreitung des Taupunkts in einem Kühler viel zu aufwändig und zu energieintensiv wäre, nutzt man bei der Adsorptionstrocknung die Eigenschaften von Silicagelen. Diese sind aufgrund ihrer riesigen inneren Oberfläche in der Lage, bei einer geringen Masse große Mengen an Wasserdampf aufzunehmen und bei einer Regeneration wieder abzugeben.
Bei vielen Prozessen, zum Beispiel in der chemischen Industrie, bei Produktionen in der Lebensmittel- und Pharmaindustrie, in Laboren und Lagern gibt es zur Aufrechterhaltung des Betriebs oder von Produkteigenschaften oft sehr genaue und exakt einzuhaltende Vorgaben an die Raumluftfeuchte. Eine Möglichkeit zur Trocknung dieser Luft besteht im Einsatz von Lüftungsgeräten und einem darin integrierten Kühler, der mit Kaltwasser oder mit Kältemittel betrieben wird.

Weiterlesen

Ausführungssicherheit für bodengleiche Duschen mit AIV durch DIN 18534

Regelwerk spiegelt endlich Baustellenpraxis wider

Regelwerk spiegelt endlich Baustellenpraxis wider

Manchmal ist die technische Entwicklung der entsprechenden Normengebung deutlich voraus. Bestes Beispiel dafür ist die Entwässerung und Abdichtung im Verbund bodengleicher Duschen. Mit der seit Juli 2017 gültigen Abdichtungsnorm DIN 18534 ist in diesem Fall die Diskrepanz nun aber aufgehoben. Die ursprüngliche DIN 18195 wurde in die Normreihen 18531 – 18535 unterteilt. Somit bildet die DIN 18195 nur noch den Rahmen für die verschiedenen Bereiche der Gebäudeabdichtung. Die neue DIN 18534 behandelt die gesamte Innenraumabdichtung. Damit sorgt sie für mehr Ausführungssicherheit bis hin zur sauberen Trennung der Gewerke.

Weiterlesen

UV-Disinfection of Cooling Towers

Reliable Control of Legionella and Biofilm for safe and efficient operation

Reliable Control of Legionella and Biofilm for safe and efficient operation

The growing number of cooling towers for process heat removal have led to an increasing number of suspects that pathogens are multiplying and expanding. Actual examples from a series of suspects are the Legionella disease cases in Ulm (2010)1,2 and in Warstein (2013)3 that were possibly caused from cooling towers, whereas in Ulm alone an illness outbreak was reported causing 5 death and 65 insured people. At that location, Legionella infection from cooling towers on top of a building was discovered and that is when an efficient disinfection system based on UV-H2O2 technology from a.c.k. aqua concept GmbH was implemented.
For preventing in the future more such cases in Germany, the VDI-Guideline 2047 page 2 is in effect since January 2015 for achieving a hygiene-proof performance of the atmospheric evaporation type cooling systems. The guideline gives the operator directions for the technically correct operation and is valid for existing and newly planned installations of atmospheric evaporator cooling systems. It is also the operator´s responsibility to ensure safety for the operation of the system4.

Weiterlesen

Energie und Energieträger im Kontext von Niedrigst- und Plusenergie-Gebäuden

Effiziente Wärmeversorgung bei Niedrigst- und Plusenergie-Gebäuden nur mit Energiebereitstellung über speicherbare Energien möglich

Effiziente Wärmeversorgung bei Niedrigst- und Plusenergie-Gebäuden nur mit Energiebereitstellung über speicherbare Energien möglich

Zukunftsfähige Energiekonzepte für Einfamilienhäuser. Energetische Anforderungen, Variantenaufstellung und energetische Bewertung der Varianten.

Auch wenn schon viel über den Niedrigst-, Null- und Plus­energie-Gebäudestandard geschrieben worden ist, soll hier nochmals klargestellt werden, dass jedes Gebäude ein Energieverbraucher ist. Gebäude bieten aber die Möglichkeit, Systeme und Infrastruktur zu installieren, die Erneuerbare Energien in Nutz- bzw. Endenergie umwandeln und bereitstellen. Allen voran ist hier die Photovoltaik (PV) zu nennen. Wenn Verluste und Verbrauch von Energie auf der einen Seite und die Bereitstellung aus Erneuerbarer Energie auf der anderen Seite gleich groß sind, spricht man von einem Nullenergie-Gebäude.
In der logischen Folge ist ein Plusenergie-Gebäude so ausgestattet, dass dort mehr Nutz- und Endenergie aus Erneuerbaren Energiequellen erzeugt, als verbraucht wird. In diesem Fall muss der Energieüberschuss in ein Wärme- oder Stromnetz eingespeist werden. Eine attraktive Alternative ist die Nutzung des Stromüberschusses, um Batterien für die Elektromobilität zu laden. Entscheidende Fragen bei der Energiebilanzierung sind der Bilanzierungszeitraum und die Anrechenbarkeit verschiedener Energieformen; beispielsweise ob ein PV-Stromüberschuss im Sommer mit einem erhöhten Heizwärmebedarf im Winter gegengerechnet werden kann. Für den schon bald gesetzlich geforderten Niedrigstenergie-Gebäudestandard liegen hierzu in Deutschland noch gar keine verbindlichen Definitionen vor.

Weiterlesen

Einfluss der Takthäufigkeit auf Schadstoffemissionen von Heizkesseln

Von der Notwendigkeit, die Emissionskonzentrationen in allen Betriebszuständen während des intermittierenden Betriebs von Heizkesseln zu bewerten, um Schadstoffemissionen wie HC und CO detailliert zu erfassen

Von der Notwendigkeit die Emissionskonzentrationen in allen Betriebszuständen während des intermittierenden Betriebs von heizkesseln zu erfassen, um Schadstoffemisionen wie HC und CO umfassend zu erfassen.

Die Heizlast von Gebäuden variiert in Abhängigkeit von schwankenden jahreszeitlichen und nutzungsbedingten Einflüssen stufenlos zwischen Null und dem Maximalwert. Ein Heizkessel muss seine Wärmeleistung dementsprechend anpassen, um den Wärmebedarf abdecken zu können. Die Leistungsanpassung erfolgt durch die Modulation des Brenners innerhalb seines Modulationsbereichs. Im Idealfall entspricht dabei die benötig­te Heizleistung der bereitgestellten Wärmeleistung des Heizkessels. Jedoch ist die Leistungsmodulation in der Praxis oft nur schwierig oder gar nicht möglich. Zwar wurden in der Vergangenheit große Fortschritte bezüglich der Größe des Modulationsbereichs gemacht, allerdings können Heizkessel nur auf ca. 15–30% der Nennwärmeleistung stufenlos heruntermodulieren. Durch die bauphysikalischen Verbesserungen der Gebäude ist die benötigte Heizleistung oftmals so klein, dass sie außerhalb des Modulationsbereichs liegt. Daher arbeiten die Heizkessel häufig in einem Taktbetrieb, in dem im Mittel die benötigte Heizleistung bereitgestellt wird.

Weiterlesen